Classroom Collaboration Analytics: Designing and Building Automated Systems for Collaboration Monitoring in Classroom Settings

Pankaj Chejara pankajch@tlu.ee

Researcher Center of Education Technology Tallinn University, Estonia

Data Scientist Applied Health Data Division Metrosert AS, Estonia

AGENDA

Introduction Modeling collaboration Generalizability Multimodal data & Collaboration monitoring Guidelines for building models Challenges/Future directions Conclusion

INTRODUCTION COLLABORATION

Collaboration is a complex construct (Rummel et al., 2011).

INTRODUCTION COLLABORATION

Collaboration is a complex construct (Rummel et al., 2011).

INTRODUCTION COLLABORATION

Collaboration is a complex construct (Rummel et al., 2011).

Difficult for teachers to monitor and detect problems (Chounta & Avouris, 2016)

INTRODUCTION MULTIMODAL LEARNING ANALYTICS

Uses sensors along with log data (Ochoa et al., 2017).

Captures multimodality of students' interactions.

INTRODUCTION MULTIMODAL LEARNING ANALYTICS

Visualization

Pattern

Modeling

MODELING COLLABORATION

Hand movement

Annotation

Expert evaluation

Artifact assessment

ť ° ነ

Rating handbook (Rummel et al., 2011) Data Feature Feature ML model ML model Evaluation

ML model development

index	frame	group	user_speak_mean	user_speak_sd	user_turns_mean	user_turns_sd	write_text	user_wh_mean	user_self_mear	user_u
0	1	87_1	3.960666666666667	1.095701398901888	2	0.4714045207910	817	0	1	0
1	2	87_1	2.57833333333333333	1.208881117213580	1	0.4714045207910	*The Growth	0	0	0
2	3	87_1	5.4003333333333332	3.269392638124429	2	1.2472191289246	*The Growth	0	1	0
3	4	87_1	Feb.56	2.222851022148508	1	0.9428090415820	*The Growth	0	0	0
4	5	87_1	3.16833333333333333	2.292290024310963	1	0.4714045207910	*The Growth	0	0	0
5	6	87_1	4.74133333333333333	1.288999956900266	2	0.4714045207910	*The Growth	0	0	0
6	7	87_1	3.9653333333333333	3.169162069415546	1	0.9428090415820	*The Growth	0	0	0
7	8	87_1	4.828	2.568189634742730	1	0.4714045207910	*The Growth	0	1	0
8	9	87_1	3.239000000000000	2.962571293094339	1	0.81649658092772	*The Growth	0	0	0
9	10	87_1	5.597	0.444648925183303	2	0.0	*The Growth	0	2	0
10	11	87_1	3.986666666666667	1.102041842319166	2	0.81649658092772	*The Growth	0	2	0
11	12	87_1	7.578	2.561475746518011	2	0.4714045207910	*The Growth	0	4	0
12	13	87_1	7.60800000000000	2.735462422821169	2	0.0	*The Growth	0	1	0
13	14	87_1	1.5296666666666666	2.163275345910044	0	0.4714045207910	*The Growth	0	0	0
14	15	87_1	8.93133333333333333	0.962386732152009	5	0.81649658092772	26	0	0	0
15	16	87_1	5.5563333333333334	2.261789900843037	2	0.4714045207910	*The Growth	0	3	1
16	17	87_1	6.727	1.017153216908183	3	0.0	*The Growth	1	3	1
17	18	87_1	10.116666666666666	0.788052592717573	2	0.4714045207910	*The Growth	0	0	0
18	19	87_1	4.003333333333333333	2.393908148242580	1	0.4714045207910	*The Growth	1	2	0
19	20	87_1	2.688333333333333333	1.207213412045369	1	0.4714045207910	*The Growth	0	0	0
20	21	87_1	3.84966666666666666	2.990847854520334	2	1.6996731711975	*The Growth	1	1	0
21	22	87_1	3.414333333333333333	2.844651160023355	1	1.2472191289246	*The Growth	0	0	0
22	23	87_1	2.5296666666666667	2.335577349512440	1	0.4714045207910	*The Growth	0	0	0
23	24	87_1	3.08433333333333333	2.186550759123195	2	1.4142135623730	*The Growth	0	0	0
24	25	87_1	5.05500000000001	4.149196629067688	1	0.9428090415820	*The Growth	0	0	0
25	26	87_1	5.5593333333333332	4.346422385773793	1	0.8164965809277	*The Growth	0	0	0
26	27	87_1	7.5973333333333332	3.063529808715575	2	0.8164965809277	*The Growth	0	1	0
27	28	87_1	3.507333333333333333	3.013227984884132	1	0.4714045207910	*The Growth	2	2	0
28	29	87_1	4.0200000000000000	2.012179581117616	1	0.4714045207910	*The Growth	1	1	0
29	30	87_1	7.0046666666666666	4.640425650974511	2	1.2472191289246	*The Growth	0	0	0
30	31	87_1	6.007666666666666	1.914539863489107	2	0.47140452079103	*The Growth	0	2	0
31	32	87_1	6.849	0.687692276142945	2	0.0	*The Growth	0	0	0
32	33	87_1	2.8800000000000000	2.347438320098457	1	0.81649658092772	*The Growth	0	0	0
33	34	87_1	3.532	2.464377135640295	2	0.8164965809277	*The Growth	0	0	1
34	35	87_1	2.981666666666667	3.437058076643777	0	0.47140452079103	*The Growth	0	1	0

Dataset

ML model development

Dataset

ML model Evaluation

WHAT NEXT?

Would our model work well in authentic classroom settings?

Collaboration quality model

Transitioning from research to practice

GENERALIZABILITY

Ability of machine learning models to perform well on unseen data (Raschka, 2018).

1

Model Evaluation Methods

EXAMPLE

Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J., Shankar, S. K., & Kasepalu, R. (2020). Quantifying collaboration quality in face-to-face classroom settings using MMLA. In International Conference on Collaboration Technologies and Social Computing (CollabTech) (pp. 159-166). Springer, Cham. https://doi.org/10.1007/978-3-030-58157-2_11 How to systematically assess and report generalizability in MMLA?

EFAR-MMLA GENERALIZABILITY EVALUATION FRAMEWORK

Context	Leave-one context out	Report performance at different generalizability levels
Group	Leave-one group out	Use frames of references as upper and lower bound of model's performance
Instance	Hold-out, CV	Report performance mean with its variation
Levels of generalizability in education	ML evaluation techniques of generalizability levels	Report hyper-parameter
Evaluate ML models at lev	various generalizability els	

Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J., Shankar, S. K., & Kasepalu, R. (2021). EFAR-MMLA: An evaluation framework to assess and report generalizability of machine learning models in MMLA. Sensors (21), 2863. https://doi.org/10.3390/s21082863

EFAR-MMLA GENERALIZABILITY EVALUATION FRAMEWORK

Assessment of generalizability relavant to MMLA

How well automated collaboration estimation models perform across different contexts varying on task, task type and school?

CONTEXT GENERALIZABILITY

Different tasks

Different task types

Different schools

CONTEXT GENERALIZABILITY

Chejara, P., Kasepalu, R., Prieto, L., P., Rodríguez-Triana, M. J., Ruiz-Calleja, A., & Schneider, B. (2023). How well do collaboration quality estimation models generalize across authentic school contexts. British Journal of Educational Technology, 00, 1–23. https://doi.org/10.1111/bjet.13402

EVALUATION

RESULTS GENERALIZABILITY ACROSS CONTEXTS

RESULTS GENERALIZABILITY ACROSS CONTEXTS

RESULTS GENERALIZABILITY ACROSS CONTEXTS

RESULTS DATA IMPORTANCE

Multimodal Data Collection & Collaboration Monitoring

CoTrack

https://www.cotrack.website

58 Teachers

CLASSROOM VIEW

Chejara, P., Kasepalu, R., Prieto, L., P., Rodríguez-Triana, M. J., & Ruiz-Calleja, A. (2024). Bringing collaboration analytics using multimodal data to the masses: Evaluation and design guidelines for developing a mmla system for research and teaching practices in CSCL. In the 14th International Learning Analytics and Knowledge Conference (LAK24). ACM. https://doi.org/10.1145/3636555.3636877

Group VIEW

Guidelines to build context generalizable collaboration estimation models

GUIDELINES

Use **60 seconds time window** for data segmentation for modeling collaboration quality using multimodal data

Use Random Forest for building robust ML models for collaboration quality

Use of **contextual data to** build context **generalizable models for estimating collaboration quality**

Thesis link

FUTURE DIRECTIONS

Investigation using cross-modal features

Impact of choosing different choices of ML modeling step on generalizability

Privacy-preserving approaches for MMLA

Teacher's perception and response to AI-enabled systems

CONCLUSION

Time to move research from laboratories to practice.

Teacher-AI hybrid partnership

66 Your reasoning for WHY you do WHAT YOU DO is more critical than WHAT YOU DO.

Thank you

Pankaj Chejara pankajch@tlu.ee

References

1. Chounta, I. A., & Avouris, N. (2016). Towards the real-time evaluation of collaborative activities: Integration of an automatic rater of collaboration quality in the classroom from the teacher's perspective. Education and Information Technologies, 21(4), 815–835. https://doi.org/10.1007/s10639-014-9355-3

2. Rummel, N., Deiglmayr, A., Spada, H., Kahrimanis, G., & Avouris, N. (2011). Analyzing Interactions in CSCL. Analyzing Interactions in CSCL, 367–390. https://doi.org/10.1007/978-1-4419-7710-6

3. DiMicco, J. M., Pandolfo, A., & Bender, W. (2004). Influencing group participation with a shared display. Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work - CSCW '04, 614. https://doi.org/10.1145/1031607.1031713

4. Bachour, K., Kaplan, F., & Dillenbourg, P. (2010). An interactive table for supporting participation balance in face-to-face collaborative learning. *IEEE Transactions on Learning Technologies*, 3(3), 203–213. https://doi.org/10.1109/TLT.2010.18

5. Lubold, N., & Pon-Barry, H. (2014). Acoustic-Prosodic Entrainment and Rapport in Collaborative Learning Dialogues. Proceedings of the 2014 ACM Workshop on Multimodal Learning Analytics Workshop and Grand Challenge - MLA '14, 5–12. https://doi.org/10.1145/2666633.2666635

5. Ochoa, X., & Worsley, M. (2016). Augmenting Learning Analytics with Multimodal Sensory Data. Journal of Learning Analytics, 3(2), 213–219. https://doi.org/10.18608/jla.2016.32.10

4. Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2018, arXiv:1811.12808.

6. Martínez-maldonado, R. (2011). Modelling and Identifying Collaborative Situations in a Collocated Multi- display Groupware Setting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6738(June), 39–46. https://doi.org/10.1007/978-3-642-21869-9

7. Spikol, D., Ruffaldi, E., Dabisias, G., & Cukurova, M. (2018). Supervised machine learning in multimodal learning analytics for estimating success in project-based learning.

Journal of Computer Assisted Learning, 34(4), 366–377. https://doi.org/10.1111/jcal.12263

8. Drachsler, H., & Greller, W. (2016, April). Privacy and analytics: it's a DELICATE issue a checklist for trusted learning analytics. In Proceedings of the sixth international conference on learning analytics & knowledge (pp. 89-98).