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Lack of knowledge over extent of generalizability of 

collaboration estimation models in classroom settings

Viswanathan & Vanlehn, 2018

Lack of knowledge over building generalizable 

collaboration quality estimation models

Grover et al., 2016 Bassiou et al., 2016

Lack of systematization in generalizability evaluation of 

MMLA based solutions

Reilly & Schneider, 2019
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How well do estimation 
models for collaboration 
quality perform across 

contexts?

How to build across-
context generalizable 
collaboration quality 
estimation models?

How can we 
systematically assess 

and report the 
generalizability of 

collaboration quality 
models?

1 2 3

RESEARCH  QUESTIONS
How to build and assess across-context generalizable machine learning models for the

estimation of collaboration quality and its dimensions in small groups
in authentic classroom face-to-face settings?
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RESEARCH 
METHODOLOGY

Informational Propositional Analytical

EFAR-MMLA

G-MET

CO-MODELS

Lack of systematization 

in generalizablity 

evalution in MMLA

Lack of knowledge over 

generalizablity of CQ 

estimation models

Lack of knowledge 

over ML pipeline 

configuration

Buiding automated models for 

estimating collaboration quality 

and its dimensions

Exploring various modeling 

pipelines

Lit. review

Case study

Statistical evaluation

Statistical and Generalizability 

evaluation

Identifying indicators and high 

performing models for 

collaboration quality

Evaluative

Engineering Method
(Basili et al., 1993)
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Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J.,  Shankar, S. K., & Kasepalu, R. (2021). EFAR-MMLA: An evaluation framework to assess 

and report generalizability of machine learning models in MMLA. Sensors (21), 2863.

EFAR-MMLA: Evaluation framework for assessing and reporting 

generalizability
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Chejara, P., Prieto, L. P., Rodríguez-Triana, M. J., Ruiz-Calleja, A., & Khalil, M. (2023). Impact of window size on the generalizability of collaboration 

quality estimation models developed using multimodal learning analytics. In the 13th International Learning Analytics and Knowledge Conference 

(LAK23) (pp. 559-565). ACM
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EFAR-MMLA

GAP #1: Lack of systematization in generalizability 
evaluation of MMLA based solutions 

Shankar et al., 2020Di Mitri et al., 2018

➢ … brings another perspective of bias identification

➢ … complements MMLA conceptual tools (e.g., MLeaM, M-DVC)
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G-MET

GAP #2: Lack of knowledge over building 

generalizable collaboration quality 

estimation models

Chounta et al., 2015

➢ … suggests 60s time window for building models for collaboration quality

➢ … illustrates that contextual data improves performance across contexts

➢ … recommends the use of Random Forest for modeling
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CO-MODELS

GAP #3: Lack of knowledge over extent of 

generalizability of collaboration estimation 

models in classroom settings

➢ … identify indicators for collaboration quality in authentic settings (e.g., verticle head movement)

➢ … achieve across-context generalizability in authentic settings with ~25% degradation

➢ … can help with closing the  learning analytics loop

Pugh et al., 2022
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“SOME” LIMITATIONS & FUTURE 
WORK

• Research in wider range of 

contexts

➔ Limitations

• Narrow educational context

• Non-temporal analysis

• Use of low-level features 

(content free)

➔ Future work addressing limitations

➔ Future work opened up by research

• Closing the loop (feedback)  

• Teacher’s response
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RG #1: There is a lack of 

systematization for the 

evaluation of automated 

machine learning models in 

MMLA and specifically MMLA 

for collaboration.

RG #2. There is a lack of 

knowledge over building 

generalizable collaboration 

quality estimation models for 

classroom settings.

RG #3. The field lacks 

knowledge on to what extent 

automated collaboration 

models can generalize in 

classroom settings. 

Research Gaps Publications

RQ #1: How to systematically 

assess and report 

generalizability of automated 

estimation models of 

collaboration quality and its 

dimensions in small groups in 

class?

RQ #2: How to build more 

generalizable automated 

estimation models of 

collaboration quality and its 

dimensions in small groups in 

classroom collaborative learning?

RQ #3: How well do automated 

estimation models for 

collaboration quality and its 

dimensions perform  across 

contexts (e.g. , task contexts, task 

type contexts, school contexts) in 

authentic classroom settings?

OB #1. To systematically assess 

and report generalizability of 

machine learning-based MMLA 

solutions of collaboration quality.

OB #2. To identify machine 

learning pipeline configurations 

that enable the building of more 

generalizable collaboration quality 

estimation models.

OB #3. To investigate the impact of 

attribute noise on the performance 

of collaboration quality models in 

authentic settings.

OB #4. To investigate 

generalizability of automated 

estimation models of collaboration 

quality at different levels (across 

different tasks, task-types, schools).
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Supporting and guiding teachers during collaborative learning activities of small groups in classroom settings 

(Reet Kasepalu)
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O 1.1: IMPORTANCE OF CONTEXT

• Generalizability might not be desirable in every case.

• For example, a model which is performing well for a certain type of collaborative learning 

activity will not loose its worth if failed to generalize to another type of activity.

• The need to consider students as being nested within classrooms and schools while 

assessing generalizability of students’ achivement (Cronbach et al.,1997)

Cronbach, L. J., Linn, R. L., Brennan, R. L., & Haertel, E. H. (1997). Generalizability analysis for performance assessments of student 
achievement or school effectiveness. Educational and Psychological Measurement, 57(3), 373-399.



O 1.2: HOW TO PROVIDE CONTEXTUAL INFORMATION TO THE 
MODEL?

Talbert, J. E., & McLaughlin, M. W. (1999). Assessing the school environment: Embedded contexts and bottom-up research strategies. In 
S. L. Friedman & T. D. Wachs (Eds.), Measuring environment across the life span: Emerging methods and concepts (pp. 197–227). 
American Psychological Association. https://doi.org/10.1037/10317-007

Bascia, N. (2014). The School Context Model: How School Environments Shape Students’ Opportunities to Learn. In Measuring What 
Matters, People for Education. Toronto: November 8, 2014

Classroom

Teacher 
community

School

External 
environments

School context Model 
(Talbert & McLaughlin, 1999)

Indicators Examples (Bascia, 2014)

Social and emotional learning is valued.

Teachers use data to support educational decision-making.

Appropriate resources are available.

Parental engagement in their children’s education

https://psycnet.apa.org/doi/10.1037/10317-007


O 1.5: CLARIFICATION OF SPEECH-TO-TEXT 

• Frequency of particular words (e.g., “I”, “WE”, “Wh-words”) (briefly mentioned 

in the paper V)



O 1.7: PRACTICALITY OF MMLA SOLUTIONS

Yan, L., Zhao, L., Gasevic, D., & Martinez-Maldonado, R. (2022, March). Scalability, sustainability, and ethicality of multimodal 
learning analytics. In LAK22: 12th international learning analytics and knowledge conference  (pp. 13-23).

• Techincal complexity

• Financial burden

• Noisy situations



O 1.8: CLOSING THE LOOP

Kasepalu R, Prieto LP, Ley T and Chejara P (2022) Teacher Artificial Intelligence-Supported Pedagogical Actions in Collaborative Learning 

Coregulation: A Wizard-of-Oz Study. Front. Educ. 7:736194. doi: 10.3389/feduc.2022.736194
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