Classroom Collaboration Analytics: Designing and
Building Automated Systems for Collaboration
Monitoring in Classroom Settings

Pankaj Chejara
pankajch@tlu.ee

Supervisors:

1 al
I ] . 4

Luis Maria Adolfo
P. Prieto JesUs Rodriguez-Triana Ruiz-Calleja

@ TALLINN UNIVERSITY


mailto:pankajch@tlu.ee
https://www.google.com/url?sa=i&url=https%3A%2F%2Fahappyphd.org%2Fposts%2Fprogress-loop%2F&psig=AOvVaw3Gf9R2iOmp3KZ5ZMP9RPTA&ust=1723544428892000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCJCX7Nud74cDFQAAAAAdAAAAABAI

AGENDA

Introduction

Research Gaps

Research Questions
Research Methodology
Contributions

Discussion

Ethical concerns <«
Limitations and Future work
Conclusion



INTRODUCTION




Individual task
orientation

COLLABORATION

Difficult for teachers to monitor and
detect problems (Chounta & Avouris,
2016)

Collaboration is a complex construct
(Rummel et al., 2011).
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exchange problem-solving
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MULTIMODAL LEARNING
ANALYTICS

Captures multimodality of students’
interactions.

Uses sensors along with log data (Ochoa
etal., 2017).
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RESEARCH QUESTIONS

U NEW
How to build and assess across-context generalizable machine learning models for the

estimation of collaboration quality and its dimensions in small groups
in authentic classroom face-to-face settings?

How can we PNEW |
systematically assess How to build across- How well do estimation
and report the context generalizable models for collaboration
generalizability of collaboration quality quality perform across
collaboration quality estimation models? contexts?

models?
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Informational Propositional Analytical Evaluative
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EFAR-MMLA: Evaluation framework for assessing and reporting
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G-MET: Methodology for building more generalizable collaboration
estimation models
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CO-MODELS: Machine learning models for estimating collaboration
quality using multimodal data

| — PN
Co-models

Multimodal

data
@l ne "‘

’~ ¢ Machine

‘ . learning

N e
.

|]]Q

Chejara, P., Prieto, L., P., Dimitriadis, Y., Rodriguez-Triona, M. J., Ruiz-Cadlleja, A., Kasepaly, R., & Shankar, S. K., (2023). Impact of data noise on
the performance of supervised machine leaming models using multimodal data to estimate collaboration qudlity. Journal of Learning Analyfics.
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RQ #3: How well do estimation models for collaboration quality perform across

contexts?
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Model experienced a loss of 22%
in balanced accuracy when

Audio data alone enabled the development of context
generalizable models

Balanced accuracy of models built using different
modalities across different group-discussion tasks
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CONTRIBUTIONS

CO-MODELS: Machine models for estimating collaboration quality
using multimodal data

Automated models for collaboration
quality and its dimensions
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DISCUSSION

GAP #1: Lack of systematization in generalizability
evaluation of MMLA based solutions

EFAR-MMLA

» ... brings another perspective of bias identification

» ... complements MMLA conceptual tools (e.g., MLeaM, M-DVC)

Di Mitri et al., 2018 Shankar et al., 2020
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DISCUSSION

R

GAP #2: Lack of knowledge over building
generalizable collaboration quality
estimation models

G-MET

» ... suggests 60s time window for building models for collaboration quality
» ... illustrates that contextual data improves performance across contexts
» ... recommends the use of Random Forest for modeling

Chounta et al., 2015
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DISCUSSION

GAP #3: Lack of knowledge over extent of
generalizability of collaboration estimation
models in classroom settings

CO-MODELS

» ... identify indicators for collaboration quality in authentic setfings (e.g., verticle head movement)
» ... achieve across-context generalizability in authentic settings with ~25% degradation

» ... can help with closing the leaming analytics loop

Pugh et al., 2022
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GAP #3: Lack of knowledge over extent of
- g estimation

Intevenstion suggestions

You can use following strategles for the current state collaboration behavior.

Dimension Suggestions

Argumentation Make sure there is somecne in the group with the role of orienting

(raising guestions with the direction of discussion)

Cooperative Go and talk to the group aabout the issue, guide them to solve
orientation their own problem: Ask about the role divisions, if possible assign a
leader whose task is to make sure everyone has shared their

thougts and feelings.

erticle head movement)

DISCUSSION

Sustaining mutual To promote, specify common rewards for the group, such as group
understanding marks

degradation
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DELICATE
FRAMEWORK
Drachsl ler, 2016
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Determination
Why do you want to apply leaming analytics?

Voluntary participation

DELICATE
FRAMEWORK

( Drachsler & Greller, 2016)
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ETHICAL CONCERNS o

External Determination

Why do you want to apply leaming analytics?

Voluntary participation

Regulation for external service providers

Explain

Be open about your intentions and objectives

Research introducation

Technical

Procedures to guarantee privacy I

Restricted access

DELICATE
FRAMEWORK

( Drachsler & Greller, 2016)

Legitimate
Why are you allowed to have data?

Anonymize
Make the individuals non retrievable
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Involve
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“SOME” LIMITATIONS & FUTURE
WORK

=> Limitations => Future work addressing limitations

* Research in wider range of
contexts

Narrow educational context

Non-temporal analysis
=> Future work opened up by research

Use of low-level features  Closing the loop (feedback)

(content free) * Teacher’s response
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Use of RF and 60 seconds time window for modeling
collaboration quality
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CONCLUSION

How to build and assess across-context generalizable machine learning models for
the estimation of collaboration quality and its dimensions in small groups in
authentic classroom face-to-face settings?

Final remarks

Guidelines

Use of RF and 60 seconds time window for modeling
collaboration quality Community efforts needed to address issues
relataed to dataset size, annnotation, modeling
Use of contextual data to build context generalizable models for
estimating collaboration quality Human-Al parternship to bring together the
power of Al and Teacher’s knowledge and
expertise

Use of audio data alone enable development of across-context
generalizable collaboration quality estimation models

18
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CLASSROOM COLLABORATION ANALYTICS: DESIGNING AND BUILDING AUTOMATED SYSTEMS FOR MONITORING
COLLABORATION IN CLASSROOM
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Market Overview

EU Al Act: Educational & Vocational Training as High Risk Industry

DIGITAL',

EDUCATION
'COUNCIl
4

Risk
Classification

High Risk
Al Systems

Requirements for
High Risk Providers*

Unacceptable
Risk

High Risk

8 areasincluding

Educational &
Vocational Training

Limited Risk

Low and
Minimal Risk

1. Alfor Admissions

Determine access or admission or to
assign to educational and vocational
training institutions

2. AlforEvaluation

Evaluate learning outcomes, including
when those are used to steer the
learning process

3. Alfor Assessment

Assessing the appropriate level of
education that individual will receive
orwillbe able to access

4. AlforProctoring

Monitoring and detecting prohibited
behaviour of students during tests

Risk and Quality
Management System

Conduct Data
Governance

Technical
Documentation &
Record Keeping

Instruction Guide

Human Oversight

Appropriate level of
Accuracy, Robustness,
and Cybersecurity

Predictions

e Compliance requirements may be too

complexandresources-intensive for
smaller companies, hindering their ability
to compete andinnovate

Restrictions on how student data can be
collected and used could limit the
potential of personalised and adaptive
tools, impeding the development of
edtech solutions relying on customisation

Complexity of regulation may induce fear
of violation, discouraging companies from
takingrisks andinnovating

*Providers: those intending to place on the market/putinto
service high-risk Al systems in the EU.



Supporting and guiding teachers during collaborative learning activities of small groups in classroom settings
(Reet Kasepalu)
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_I AUTHENTIC FACE-TO-FACE

L CLASSROOM SETTINGS

o Free-form collaboration

o Writing

o Synchronous interaction

o Laptop use
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O 1.1: IMPORTANCE OF CONTEXT

* The need to consider students as being nested within classrooms and schools while
assessing generalizability of students’ achivement (Cronbach et al.,1997)

* Generalizability might not be desirable in every case.

* For example, a model which is performing well for a certain type of collaborative learning
activity will not loose its worth if failed to generalize to another type of activity.

Cronbach, L. J,, Linn, R. L, Brennan, R. L., & Haertel, E. H. (1997). Generalizability analysis for performance assessments of student
achievement or school effectiveness. Educational and Psychological Measurement, 57(3), 373-399.



O 1.2: HOW TO PROVIDE CONTEXTUAL INFORMATION TO THE
MODEL?

Indicators Examples (Bascia, 2014)

Parental engagement in their children’s education

Appropriate resources are available.

Teacher
community

Teachers use data to support educational decision-making.

Social and emotional learning is valued.

School context Model
(Talbert & MclLaughlin, 1999)

Talbert, J. E., & McLaughlin, M. W. (1999). Assessing the school environment: Embedded contexts and bottom-up research strategies. In
S. L. Friedman & T. D. Wachs (Eds.), Measuring environment across the life span: Emerging methods and concepts (pp. 197-227).
American Psychological Association. https://doi.org/10.1037/10317-007

Bascia, N. (2014). The School Context Model: How School Environments Shape Students’ Opportunities to Learn. In Measuring What
Matters, People for Education. Toronto: November 8, 2014


https://psycnet.apa.org/doi/10.1037/10317-007

O 1.5: CLARIFICATION OF SPEECH-TO-TEXT

* Frequency of particular words (e.g., “I”, “WE”, “Wh-words”) (briefly mentioned
in the paper V)



O 1.7: PRACTICALITY OF MMLA SOLUTIONS

* Techincal complexity
* Financial burden

* Noisy situations

Yan, L., Zhao, L., Gasevic, D., & Martinez-Maldonado, R. (2022, March). Scalability, sustainability, and ethicality of multimodal
learning analytics. In LAK22: 12th international learning analytics and knowledge conference (pp. 13-23).



O 1.8: CLOSING THE LOOP

Back
Group-3

Session: BT1g

Participants: Sandra, Helina, Enely,

Intevenstion suggestions

You can use following strategies for the current state collaboration behavior
= Configure Dashboard 9 sirateg
Speaking analytics Writing analytics Dimension Suggestions

Argumentation Low Make sure there is someone in the group with the role of orienting
(raising questions with the direction of discussion)

Group dynamics Writing stats

Total updates: 214

Total words: 141 Cooperative Low Go and talk to the group aabot the issue, guide them to solve
Total charactars: orientation their own problem; Ask about the role divisions, if possible assign a
leader whose task is to make sure everyone has shared their
thougts and feelings
‘Enely Sustaining mutual To promote, specify common rewards for the group, such as group
Helina understanding marks
Speaking time Individual cont
1400
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Sandra  Halna  Enely

Kasepalu R, Prieto LP, Ley T and Chejara P (2022) Teacher Artificial Intelligence-Supported Pedagogical Actions in Collaborative Learning
Coregulation: A Wizard-of-Oz Study. Front. Educ. 7:736194. doi: 10.3389/feduc.2022.736194
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