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Abstract
Multimodal Learning Analytics (MMLA) research has shown the feasibility of building automated models of collab-
oration quality using Artificial Intelligence (AI) techniques (e.g., supervised machine learning), thus enabling the
development of monitoring and guiding tools for Computer-Supported Collaborative Learning (CSCL). However,
the practical applicability and performance of these automated models in authentic settings remains largely an
under-researched area. In such settings, the quality of data features or attributes is often affected by noise, which
is referred to as attribute noise. This paper undertakes a systematic exploration of the impact of attribute noise
on the performance of different collaboration quality estimation models. Moreover, we also perform a comparative
analysis of different machine learning algorithms in terms of their capability for dealing with attribute noise. We
employ four machine learning algorithms that have been often used for collaboration quality estimation tasks due to
their high performance: Random Forest, Naive Bayes, Decision Tree, and AdaBoost. Our results show that Random
Forest and Decision Tree outperformed other algorithms for collaboration quality estimation tasks in the presence of
attribute noise. The study contributes to the Multimodal Learning Analytics (and Learning Analytics in general) and
CSCL fields by illustrating how attribute noise impacts collaboration quality model performance and which machine
learning algorithms seem to be more robust to noise, thus, more likely to perform well in authentic settings. Our
research outcomes offer guidance to fellow researchers and developers of (Multimodal) Learning Analytics systems
employing AI techniques with multimodal data to model collaboration-related constructs in authentic classroom
settings.

Notes for Practice

• Multimodal Learning Analytics offers a holistic approach to estimate collaboration levels, thus, can potentially
help teachers to facilitate CSCL.

• Random Forest algorithm found to be more robust to attribute noise for collaboration quality estimation
tasks.

• Decision Tree algorithm could offer a better option for modeling collaboration quality with attribute noise by
providing a potential explanation for its results.

• Audio-based collaboration quality estimation models suffer from 50% degradation in performance as a
result of attribute noise in audio features.
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1. Introduction
Collaboration is a key 21st-century skill (Voogt & Roblin, 2012) and researchers have found evidence of its positive impact on
learning (Laal & Ghodsi, 2012). To develop this skill among students, merely putting them into collaborative learning activities
is not sufficient. Teachers, apart from designing the collaborative activity, often need to support students during collaborative
learning, which requires monitoring the group’s activities to estimate the quality of collaboration in each group and intervening
when collaboration problems are detected. However, the estimation of collaboration quality in authentic learning contexts
is extremely difficult (Schwarz & Asterhan, 2011), given the multiplicity of learner groups working in the classroom and
collaboration’s inherently multidimensional nature (e.g., argumentation, mutual understanding) (Rummel et al., 2011).

Automated estimation of collaboration aspects has gained significant traction from researchers due to its potential to support
teachers in authentic classroom settings (Schneider et al., 2021). Researchers have demonstrated the feasibility of building
models capable of making predictions of high-level collaboration measures, e.g., collaboration quality (Martı́nez-Maldonado,
2011), confusion (Ma et al., 2023), rapport (Lubold & Pon-Barry, 2014), etc. To adequately estimate collaboration quality, the
rich and multimodal nature of group interactions (e.g., verbal communication, gestures, digital interactions) needs to be taken
into account. Consequently, researchers have utilized a variety of data (e.g., audio, video) to build automated estimation models
of collaboration quality (Praharaj et al., 2021; Schneider et al., 2021). This field of research, utilizing multiple data sources to
understand collaboration (and learning in general), is known as Multimodal Learning Analytics (MMLA) (Ochoa & Worsley,
2016). Researchers have suggested the use of multimodal data to understand complex learning processes in a more holistic
way (Drachsler & Schneider, 2018; Worsley & Blikstein, 2018). Researchers have employed simple sensor-based quantitative
features (e.g., speaking time, the distance between hands) to complex ones with a focus on discourse (e.g., cohesion of speech
text Reilly and Schneider (2019)). These features, along with others, have enabled researchers to build dashboards to support
teachers in monitoring group behavior in their classrooms.

MMLA researchers often collect data using a wide range of data collection devices, e.g., microphones, cameras, heart-rate
monitors, etc. (Di Mitri et al., 2018; Schneider et al., 2021). The use of these devices often involves a setting-up phase prior to
actual data collection. This phase is where researchers configure the device and make sure that it is ready for data collection
(e.g., calibrating eye-gaze trackers on the spot). During the data collection phase, these devices need to be used in a proper
way (e.g., limited movement while wearing skin-conductance sensors) to minimize errors in the collected data, which is likely
to affect the performance of developed machine learning (ML) models (Nettleton et al., 2010). In laboratory settings, where
researchers have greater control than in real-world settings, complying with the setup and usage guidelines of multimodal
devices can be ensured with higher success. Furthermore, laboratory settings allow the collection of multimodal data with only
a few devices (e.g., two eye-trackers) by running the study in multiple batches of participants (e.g., one dyad at a time). This
approach permits researchers to use fewer higher-end data collection devices, which are often expensive, to ensure minimal
noise.

In contrast, the classroom environment may impede the use of higher-end multimodal devices due to reasons ranging from
higher financial cost -due to the need for multiple sensors units (Yan et al., 2022)- and increased complexity -associated with
the setup of multiple data collection devices-, room conditions (e.g., student distribution) to the intrusiveness of sensors which
may hamper the learning process (Chua et al., 2019; Darvishi et al., 2022). Furthermore, achieving full compliance from
participants in terms of device use, such as minimizing movement around a microphone array, may not always be feasible in
classroom settings. As a consequence, data collected in authentic classroom settings often suffers from lower quality due to
various sources of noise. This decline in data quality is also reflected in the features extracted from different data sources, which
are used to construct ML models, such as those for collaboration quality estimation. Furthermore, the limitations of feature
extraction technology (e.g., computer vision-based emotion detection, speech-to-text conversion) add one more source of noise
to the extracted features. Consequently, all these factors ranging from students’ behavior, hardware limitations, and feature
computation errors affect the quality of features (or attributes) used by automated models to estimate collaboration quality. The
aggregate of noise from different sources has been termed ”attribute noise” in the ML literature (Nettleton et al., 2010). As a
result of attribute noise, the performance of ML models (especially in authentic situations) is often affected (Nettleton et al.,
2010).

To bring the benefits of automating collaboration quality estimation (in the form of monitoring/guiding tools) to the
classroom and to improve the reliability of such models, there is a need to investigate how collaboration quality estimation
models perform in the presence of attribute noise. Additionally, understanding which ML algorithms excel under these
conditions is essential. This line of research is of high relevance to the MMLA (and LA more generally) research fields in
order to bridge the gap between research and practice. Furthermore, this also expands our understanding of the noise-handling
capability of AI in the educational context.

To systematically study the impact of attribute noise in authentic settings, this paper investigates how the performance of
collaboration quality estimation models developed using multimodal data (concretely, audio and log data) is affected in the
presence of different types of attribute noise (e.g., noise in all attributes from a specific data source) in different proportions.
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Moreover, we also analyze the performance of collaboration quality estimation models developed with ML algorithms which
are widely used for similar estimation tasks (Martı́nez-Maldonado, 2011; Smith et al., 2016; Spikol et al., 2017) to ascertain
their noise-handling abilities. For our investigation, we used multimodal datasets collected from 11 different learning contexts
during face-to-face collaborative learning activities in Estonian vocational school classrooms. For our research study, we
considered learning context as consisting of multiple aspects (e.g., students, teacher, learning activity, subject), thus, change in
any of these aspects has been taken into account as a criteria for difference among learning contexts, e.g., differences in tasks as
a basis of criteria for task-contexts as in (Pugh et al., 2022).

The rest of the paper is structured in seven sections. In Section 2, we provide background information on collaboration
quality, data quality and attribute noise. Section 3 offers ML research on how attribute noise impacts models’ performance, and
the state-of-art of collaboration estimation using MMLA. Section 4 presents our research questions for the study and Section 5
explains the research methods and datasets used in the paper. In Section 6, we present the analysis results. Section 7 discusses
the results, their implications, and limitations of the present study. Finally, Section 8 concludes the paper with our plan for
future studies.

2. Background
This section provides a theoretical background of collaboration quality and its underlying aspects. Additionally, the section also
offers an introduction to attribute noise.

2.1 Collaboration quality
Collaboration is defined as “a coordinated, synchronous activity that is the result of a continued attempt to construct and
maintain a shared conception of a problem” (Roschelle & Teasley, 1995). In general terms, collaboration happens when
two or more individuals work together toward a common goal. There are multiple underlying aspects to collaboration (e.g.,
communication or coordination). To understand these aspects of collaboration in depth, researchers from learning sciences have
proposed several frameworks (Cukurova et al., 2018; OECD, 2017; Rummel et al., 2011). For instance, Cukurova et al. (2018)
proposed a framework to analyze non-verbal behavior through observations to understand different aspects of collaborative
problem solving (e.g., mutual understanding). One of the more widely used frameworks in MMLA to characterize these
underlying aspects was initially proposed by Meier et al. (2007), and later extended by Rummel et al. (2011). This framework
specifies five aspects of successful collaboration: communication, joint information processing, coordination, interpersonal
relationships, and motivation. The communication aspect emphasizes the importance of the way participants communicate
their ideas and maintain a unified understanding of the problem/solution. This aspect has been divided into two dimensions,
namely, sustaining mutual understanding and collaboration flow. These dimensions focus on participants’ having a common
understanding, and having a “coherent sequence” of their exchanges. The second aspect, joint information processing, focuses
on sharing ideas, questioning, and answering during the group activity. This aspect has been divided into two dimensions:
knowledge exchange and argumentation. The first dimension focuses on the epistemic side of a group’s conversation, while
the second dimension captures the process of question answering of the group’s participants to reach a consensus. The third
aspect, coordination, focuses on the execution of the given task in a timely and orderly manner. This aspect has a single
dimension of structuring the problem-solving process which emphasizes on the group’s strategy to solve the given problem
(e.g., planning of group activities). The fourth aspect, interpersonal relationships, refer to the social plane of group interactions
involving relationships between group members. This aspect has one dimension: cooperative orientation which focuses on
group dynamics (e.g., how welcoming is the group for others ideas/suggestions). The fifth aspect, motivation, focuses on an
individual’s motivation for working toward the given task. This aspect has one dimension (i.e., individual task orientation) which
in contrast to aforementioned dimensions focuses on individual rather than group. These aforementioned seven dimensions
enable a quantitative assessment of collaboration quality which further opens up the door for building support systems for
teachers to automatically estimate collaboration quality. While other frameworks have been proposed in the literature to model
collaboration (e.g., NISPI framework from Cukurova et al. (2018); PISA framework from OECD (2017)) the way Rummel
et al. (2011) break down collaboration quality into seven dimensions has proved to enable the use of intervention strategies
from learning sciences (Kasepalu et al., 2022) which makes the chosen framework suitable for developing automated support
systems for practitioners. This paper models collaboration quality by analyzing the aforementioned seven dimensions.

2.2 Attribute noise
A widely used definition of quality data is “data fit for use” (Wang & Strong, 1996) that is “free of defects and possessed desired
features” (Redman, 2001). Accordingly, the quality of attributes (i.e., features extracted from various data) is determined by
“how well the attributes characterize instances for modeling purposes (e.g., classification)” (Zhu & Wu, 2004). This quality,
however, can be compromised in the presence of noise1 during the phases of data acquisition and data pre-processing (Nettleton

1a random error or unexplained variance in a measured variable (Han & Kamber, 2000)
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et al., 2010). The effects of these different sources of noise on feature/attribute-level data have been termed attribute noise (Zhu
& Wu, 2004). In a more general sense, attribute noise is defined as “anything which obscures the relationship between attributes
and class” (or target variables, e.g., level of collaboration quality) (Hickey, 1996) (as cited in Nettleton et al. (2010)).

Figure 1. Attribute noise factors in authentic classroom settings

We use a hypothetical generic example of the use of ML models in classrooms to explain the notion of attribute noise in the
context of collaboration quality estimation. Figure 1 illustrates the functioning of a ML model that is deployed in a classroom
to estimate collaboration quality during authentic learning situations. This process contains data collection and pre-processing
of features which are then fed to an ML model for estimation. During these two phases, i.e., data collection and pre-processing,
various factors can give rise to attribute noise. Drawing from MMLA, ML literature, and our prior engagements in MMLA
studies conducted within authentic contexts (Chejara, Kasepalu, Prieto, Rodrı́guez-Triana, Ruiz-Calleja, & Shankar, 2023;
Chejara, Prieto, et al., 2023; Chejara et al., 2024), we have identified four distinct categories of factors. These factors pertain to
the environment, hardware, participants’ behavior, and feature computation technology. We have categorized these factors in
alignment with the phases of data collection and data pre-processing, which are the stages where attribute noise is known to
occur (Nettleton et al., 2010).

• Environmental factors: They include causes of attribute noise originating from the surrounding atmosphere. For
example, background noise degrading audio data quality (Smith et al., 2016) and improper lighting in the classroom
cause the recording of low-quality video.

• Hardware-related factors: These are mainly related to data recording devices, and include malfunctioning, improper
configuration of equipment (Kalapanidas et al., 2003), and poor quality of used hardware.

• Behavioral factors: These are associated with participants’ behavior. An example is when students show exceptional or
aberrant behavior (Sonnenberg & Bannert, 2015) (e.g., an unconscious tapping of the student in the table, which muddles
up the audio from the mike) causing the model -which learned a relationship between speaking-time based on audio
energy level and collaboration quality- to perform worse. Another example is when students do not follow specific setup
instructions during multimodal data collection (e.g., students moving around a microphone array causing wrong detection
of speaking behavior). Previous research has also provided preliminary evidence on biased results of Learning Analytics
(LA) when there is noise in data due to behavioral factors (Alexandron et al., 2019).

• Feature computational factors : These are concerned with the technology used for feature extraction purposes and
originate from the technology’s limitation. For example, automated facial feature detection technology, while highly
sophisticated, is unlikely to yield features with absolute precision. Consequently, the utilization of such technology
introduces an additional error component to the attribute noise.

3. Related work
This section provides an overview of ML research studies that have investigated attribute noise’s impact on model performance.
The section next describes state-of-art research employing ML to build automated models of collaboration quality (and various
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aspects of collaboration, e.g., task performance) using multimodal data along with research studies investigating the impact of
noise on automated models for collaboration.

3.1 ML research on how attribute noise impacts model performance
There are several ML studies investigating the impact of attribute noise on model performance. Kalapanidas et al. (2003)
investigated how attribute noise affects regression and classification models developed in the context of air quality modeling
(e.g., for toxicity detection). Their results from five-fold cross-validation showed that a linear regression model performed
comparably better in dealing with noisy data. Melville et al. (2004) investigated the noise sensitivity of ensemble classifiers
(e.g., bagging and boosting). Their results found that the bagging algorithm performed better in the presence of noise. Zhu and
Wu (2004) did an extensive study by exploring various noise proportions in training and test data. Their work looked into the
accuracy measures of a single ML algorithm on open-source datasets. Nettleton et al. (2010) compared the performance of
four ML algorithms in dealing with attribute noise. The authors generated a synthetic dataset to study the impact of attribute
noise on machine learning models developed using Naive Bayes, Decision Tree, Support Vector Machine, and Instance-based
learning. The noise in their study was manually added in different proportions to input data as well as class labels to create
different cases for the study. Their study found Naive Bayes as the most robust algorithm in the case of attribute noise. These
aforementioned studies have shown that attribute noise had a considerable impact on the model’s performance, although the
impact was not uniform across different ML algorithms. Moreover, these studies have also indicated that the robustness of a
particular ML algorithm to attribute noise was dependent on the specific nature of the dataset being processed.

The study of impact has also been conducted in domains, e.g., audio-video speech recognition (Papandreou et al., 2009),
medical diagnosis (Reyes-Garcı́a et al., 2018) as cited in Ma et al. (2023). For example, Reyes-Garcı́a et al. (2018) investigated
the impact of noise in terms of missing values (or null values) on the performance of the model for patient physiological health
deterioration. They manually added null values in the data in different proportions (i.e., 25%, 50%, 75%). Their results reported
that model performance was above .90 for 25% missing values.

3.2 MMLA research on collaboration quality estimation
MMLA researchers have explored the use of various types of data sources from the physical space for modeling collaboration,
e.g., video (Spikol et al., 2018), audio (Ponce-Lopez et al., 2013), or eye-gaze (Schneider & Pea, 2013). Certain research
work has even investigated the feasibility of real-time prediction of collaboration processes in terms of group collaboration
quality (Martinez-Maldonado et al., 2015). Researchers have employed various ML algorithms to build automated models
for collaboration quality, group task performance, and group artifact quality, e.g., Naive Bayes, Decision Tree, Best First
Tree, AdaBoost, SVM, Neural Network, Random Forest, Logistic Regression, K-Means, and Res-NET (Chejara et al., 2021;
Martinez-Maldonado et al., 2013; Reilly & Schneider, 2019; Spikol et al., 2018). Random Forest was frequently reported to
outperform other ML algorithms (e.g., SVM, Naive Bayes) for estimating collaboration quality (Reilly & Schneider, 2019;
Viswanathan & Vanlehn, 2018). For evaluation, researchers have mainly employed k-fold cross-validation (Martinez-Maldonado
et al., 2013; Spikol et al., 2018) and rarely evaluated their models across different contexts (Pugh et al., 2022). In educational
terms, k-fold cross-validation evaluation only estimates the performance in authentic learning contexts similar to the one used
during model training. However, if we aim for a wider adoption of ML solutions in real practice, where the dataset will most
likely come from a different context than the one used for training, then we need to go beyond single-context evaluations. This
issue has also been raised in a generalizability evaluation framework of MMLA (EFAR-MMLA), suggesting the evaluation of a
model’s performance on higher levels of generalizability (e.g., group, context) (Chejara et al., 2021).

MMLA research works on collaboration estimation have shown the feasibility of building automated collaboration models.
The current research work has achieved moderate (70% accuracy) to high performance (90% accuracy) (Ponce-Lopez et al.,
2013; Viswanathan & Vanlehn, 2018). However, the majority of these MMLA studies on collaboration are conducted in
laboratory settings (Chua et al., 2019). A recent MMLA review reported an increasing number of MMLA studies being
conducted in authentic settings (approximately 50%), though this is not the case when considering MMLA studies on group
collaboration (Only 4 out of 100 reviewed studies, Yan et al. (2022)).

The noise issues inherent with the use of multiple data sources (e.g., technical issues, hardware failure), and authentic
classroom settings (e.g., audio from other students) make it of high relevance for the research fields (e.g., MMLA, LA,
CSCL) using AI in educational contexts to develop models which can deal with noise (Crescenzi-Lanna, 2020; Emerson
et al., 2020). However, there is a lack of research in this direction which can potentially limit the transition of research to
practice (Crescenzi-Lanna, 2020). Ma et al. (2023) in their study showed the negative impact of noise on the prediction of
confusion and conflicts moments during collaborative learning. Their study developed ML models using features extracted
from audio and video data (e.g., speech, and facial features) and investigated models’ performance. Their results showed the
noise in audio led to a substantial decrease in the performance accuracy from .79 to .61. This study offers preliminary evidence
of the negative impact of noise on the performance of ML models using multimodal data for collaborative learning activities.
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While predicting collaborative problem-solving aspects with large language models, Pugh et al. (2021) reported a performance
decrease from .83 to .78 when models applied in authentic noisy classroom settings.

Furthermore, the findings from ML research on noise impact on performance may not be directly applicable to the
aforementioned research fields (e.g., MMLA, CSCL) because the datasets used in ML research on noise impact are from non-
educational contexts. Thus, their findings may not hold, given that noise impact is conditioned by the datasets used (Nettleton
et al., 2010). Besides, in educational settings the developed ML models are likely to perform on data coming from a different
learning context. Therefore the knowledge of attribute noise impact on performance across-context is also needed in addition to
impact over within-context performance. Therefore, there is still a research gap on how attribute noise will impact the model’s
performance in authentic educational contexts and, more specifically, how noise affects performance across different learning
contexts.

4. Research questions
Based on the aforementioned state of the art in ML and MMLA, this study explores the following research questions in the
context of collaboration quality estimation:

RQ1: How do different types and different proportions of attribute noise in test data impact the collaboration quality
estimation models’ performance within and across-context?
This question aims to investigate how the performance of the collaboration quality model is affected when used for estimation
tasks with attribute noise emulated by manually introducing it in the test data set. This case reflects an education situation
where an ML model trained using high-quality data which is collected from the classroom and has gone through a data cleaning
phase (e.g., discard data with missing values, handling outliers), and upon deployment is unlikely to have the same quality of
data. Thus, the investigation assesses the potential of existing models in authentic scenarios (where the aforementioned factors
are likely to affect the quality of attributes).

RQ2: Which ML algorithms show more robust performance in the presence of attribute noise in test data for the
task of estimating collaboration quality?
This question entails gaining insights into the performance of ML algorithms for collaboration quality estimation in the
presence of noise. Recognizing that performance is not the sole measure of success and that there is often a trade-off between
performance and explainability, we also explore the explainability aspect while investigating the noise-handling capabilities of
used ML algorithms.

5. Materials and Methods
In this section, we present the multimodal datasets used in the study and methods for generating attribute noise, building
collaboration quality estimation models, and assessing the performance of the developed models. The datasets were collected as
part of our previous work where we developed collaboration quality estimation models and investigated the teachers’ perception
of the use of collaboration monitoring systems (Chejara, Prieto, et al., 2023; Kasepalu et al., 2023). We decided to use these
datasets because of unavailability of benchmark multimodal dataset of collaboration quality in the field due to ethical concerns.

Figure 2. Typical classroom setup used for data collection in the present study
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Table 1. Data features

Data type Feature name Description Related studies

Audio

speaking time Speaking time in seconds MMLA research studies have found speaking time an-
turn taking Number of speaking turns

taken by the participant
d turn-taking as indicators of collaboration (Martinez-
Maldonado et al., 2013; Ponce-Lopez et al., 2013)

freq I, freq you
and freq we

Frequency of ‘I’, ‘You’, and
‘We’

Storch (2001) found differences between high and low
collaborating groups in terms of their use of personal
pronouns.

freq wh Frequency of wh-words (e.g.,
what, why, who, where, how)

Question-asking behavior indicates argumentative na-
ture of collaboration as per rating scheme of Rummel
et al. (2011).

Log chars add Number of characters added Indicators of individual participation which have been
chars del Number of characters deleted found as one of the key quantitative metrics for collab-

orative learning (Weinberger & Fischer, 2006)

5.1 Study Context
The datasets for the study were collected from an Estonian vocational school in a total of 11 classroom sessions. These sessions
involved five different subject teachers, six classrooms, and 105 students. These subjects were English language, Estonian
language, Woodwork with integrated chemistry, Mathematics, and Communication. The participants were older than 18 years
and had prior experience working in group activities. The participants were of Estonian background and used the Estonian
language for communication during the learning activities. Each session was 30-60 minutes long and involved face-to-face
interaction as well as using a collaborative text editor (i.e., Etherpad). Before the activity, the teacher formed groups of sizes
2-4 based on the available number of students. During the activities, the teacher was present in the classroom and carried out
routine tasks involving monitoring of groups’ activities, and offering help when needed. Students were in the same classrooms
and instructed to use headphones primarily capturing high-quality audio through microphones. The seating arrangement of
students was done by teachers based on the classroom’s logistics. Participants from the same group sat close to each other.
Figure 2 shows a group of students during the activity.

5.2 Datasets
We collected 11 multimodal datasets (audio and log) corresponding to the 11 sessions in an Estonian vocational school where
the collaborative learning activities took place. The data were collected using CoTrack (Chejara et al., 2024) which is a
web-based multimodal data collection tool. CoTrack provided data features through its integrated pre-processing functionality
including voice activity detection, speech recognition using Google Speech-to-Text, and writing analytics. Out of this pre-
processed data, we extracted speaking time, turn-taking, frequency of ‘I’ and ‘We’, frequency of WH words (e.g., What,
Why), and the number of characters added or deleted as the key features (i.e., attributes) for model development. Such simple
quantitative measures that do not require sophisticated discourse analysis have been used by prior research for collaboration
quality estimation (Martı́nez-Maldonado, 2011; Ponce-Lopez et al., 2013). Due to the simplicity of these features, they may
be easily applied and adopted by practitioners. Moreover, these features, despite being simple, have been demonstrated to
achieve across-context generalizability for collaboration quality estimation in current research (Chejara, Kasepalu, Prieto,
Rodrı́guez-Triana, Ruiz Calleja, & Schneider, 2023). Our decision to use these features, thus, is based on prior research in
MMLA for CSCL. Table 1 provides further details on related research studies with features chosen in the presented study.
Please refer to Appendix B for further details.

Regarding audio data collection, each participant was wearing a headphone to allow the audio data to be as noise-free
as possible. We further excluded 10 groups whose audio data was either missing or corrupted due to hardware issues. For
ground truth, four graduate master students were first trained using the rating scheme from Rummel et al. (2011) and then
assigned videos for annotation. The rating scheme involves assigning scores on a 5-point scale to seven dimensions of
collaboration quality: argumentation, sustaining mutual understanding, knowledge exchange, collaboration flow, cooperative
orientation, structuring problem solving and time management, and individual task orientation. The inter-rater reliability score
for all the aforementioned dimensions using the rating scheme was at a substantial level (Kappa >= .65). The scores of the
aforementioned dimensions were added and the average was taken to get a measure of overall collaboration quality, following
similar work in MMLA (Martı́nez-Maldonado, 2011).
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5.3 Methods
We present methods for emulating different types of attribute noise in the dataset, and for building and evaluating ML algorithms
for collaboration quality estimation.

5.3.1 Generating attribute noise
To emulate attribute noise, we adopted a systematic approach proposed by Nettleton et al. (2010) (Algorithm 1). This approach
involves a two-step process: First, a specific number (x%) of cases is randomly selected using a uniform distribution. Then, for
each selected case, the value of each attribute is replaced with an error value. This error value is initially drawn from a standard
Gaussian distribution and then scaled to match the range of the corresponding attribute. Our choice of utilizing a Gaussian
distribution for introducing attribute noise was informed by the central limit theorem, which posits that “the normalized sum of
random variables follows a Gaussian distribution” (Peebles, 1987). In our study, we conceptualized attribute noise as the result
of the accumulation of multiple error components introduced during the phases of data collection and data pre-processing,
influenced by various factors (e.g., environmental and hardware-related factors). For example, consider a scenario where audio
data was collected with background noise and later analyzed using a feature computation technique, which added another
error component given the limitation of the technique. The attribute noise in this case can be successfully modeled using our
conceptualization utilizing the property of the central limit theorem. This conceptualization, however, is limited in terms of
modeling attribute noise to the cases where multiple factors contribute to the noise. For example, this conceptualization is
inapplicable to the scenarios where a single factor influences the data quality.

Algorithm 1: Add x% noise in dataset D
Input: Multimodal dataset D
Output: Multimodal dataset with attribute noise
cases← select x% cases from D using uniform distribution
foreach case in cases do

foreach attribute in case do
Compute the range of attribute
Draw a random value from standard Gaussian distribution
Scale the random value to the attribute range
Replace the attribute’s value with the scaled value

end
end

We considered three different types of scenarios in our study. These scenarios are the following.

• Single source attribute noise
This scenario represents a situation where the noise is present in attributes that are extracted from a specific data source.
There are several factors that may introduce noise in audio or log data. For example, attributes from audio data are
likely to have a higher degree of noise given the poor quality of classroom audio data. While the noise2 in audio data
is likely to occur in classrooms, the log data is less prone to become noisy. However, there is still a possibility due to
factors related to the classroom environment, hardware, and students’ unexpected behavior. For instance, in classroom
settings, sometimes there are fewer devices (e.g., laptops, tablets) than students, and the sharing of devices may obscure
collaboration dimensions like individual task orientation as captured by the log data. Students’ unexpected behavior, e.g.,
extensive use of copy/paste, may also obscure the measurement of participation from log data (e.g., a single keystroke
transforms into a spike on log features like “number of characters written”). Another example of log noise is when the
laptop fails to connect to the Etherpad or the server fails to record log data.

To emulate this noise scenario, we added noise first in features extracted from audio data only, and then in features
extracted from log data only. This step resulted in two3 sets of datasets: one with audio noise and another with log noise.
We added different proportions of noise (.10, .20, .30, .40, .50) following studies in ML on similar investigations (Zhu &
Wu, 2004). We emphasize here that the noise levels were relative not absolute. For example, an audio noise level of
.10 represented that the dataset had 10% cases where audio attributes’ values were replaced with erroneous values in
comparison with original (cleaned) attributes. To clarify this concept further, consider Table 2 as an illustrative example.
The dataset presented therein comprises of five cases and two attributes extracted from audio data, specifically the mean

2Here, we like to remind the reader our criteria for noise is “.. anything which obscures the relationship between features and target label” (Hickey, 1996).
3Our datasets also had video data but that was meant for annotation purpose only.

8



Table 2. Example of noisy audio attributes at 20% and 100% levels (erroneous values are presented in red color)

Original dataset 20% noisy dataset 100% noisy datasetCases speaking mean turn-taking mean speaking mean turn-taking mean speaking mean turn-taking mean

1 3.9 2 3.9 2 26.1 7.4
2 2.5 1 12.6 2.4 9.3 4.4
3 5.4 2 5.4 2 1.7 .9
4 2.5 1 2.5 1 6.2 10.5
5 3.1 1 3.1 1 0.7 6.5

of speaking time and the mean of turns taken. In a 20% noisy audio dataset, one out of five cases has erroneous values
for both attributes (i.e., 12.6 and 2.4).

• Single source missing attributes
This scenario represents the situation when the complete data from a specific source is not available due to a hardware
malfunction. For this scenario, we first replaced all audio attributes’ values with erroneous values (i.e., 100% noise),
and then we repeated this process for log attributes’ values. The last two columns of Table 2 illustrate how the dataset
appears after the introduction of 100% noise. Importantly, we chose to completely randomize attribute values through the
introduction of 100% noise rather than discarding these features. This choice was made to maintain uniformity in the
number of input features, ensuring consistency between the training and testing phases of the developed models.

• Multiple source attribute noise
This scenario represents a situation where different factors simultaneously cause noise in attributes of multiple data
sources. We emulated this by simply using the aforementioned algorithm to add noise to all the features of the datasets.
We added different proportions of noise in all features as in the single source attribute noise scenario.

5.3.2 Building collaboration quality classification models using different ML algorithms
We employed four ML algorithms, namely, Random Forest, AdaBoost, Naive Bayes, and Decision Tree for two reasons. First,
these algorithms have been used frequently and found to achieve high performance at the task of estimating collaboration
quality (or its aspects) with multimodal data (Chejara et al., 2021; Martinez-Maldonado et al., 2013; Smith et al., 2016; Spikol
et al., 2017). Secondly, the ML research on noise handling found that these algorithms were shown to offer the best performance
with noisy data in contexts other than education (Melville et al., 2004; Nettleton et al., 2010).

Our model development pipeline included five steps: data scaling, outlier handling, hyper-parameter optimization, threshold
selection, and use of contextual features (e.g., the total number of students present in the classroom). Our decision to use this
particular configuration was based on a previous study where we explored various configurations of pipelines toward building
generalizable collaboration quality estimation models (Chejara, Prieto, et al., 2023). We used Kappa as a performance metric
of our models which takes into account how well the model is performing for positive (e.g., High) and negative (e.g., Low)
labels of collaboration quality. The metric has been used by other researchers for similar modeling problems (Viswanathan &
Vanlehn, 2018).

5.3.3 Evaluating model performance
For model evaluation, we used 10-fold cross-validation and leave-one-context-out evaluation schemes (Figure 3). The first
evaluation method, i.e., 10-fold cross-validation (CV), estimates how well a model performs on data coming from a similar data
distribution or in educational terms, from a similar learning context. We used the performance measure from 10-fold CV as a
measure of within-context performance. The leave-one-context-out evaluation method assesses the model’s performance on a
dataset that is coming from a different learning context than the one used during training data. Thus, it provides a measure of
across-context performance which is a more realistic evaluation as once a model is put into practice, the model will perform on
data from a new context each time it is used. In both evaluations, the test set was induced with the attribute noise with different
proportions using the aforementioned noise-generation method.

5.3.4 ML algorithms’ effectiveness in handling attribute noise
To study which ML algorithm is better at dealing with attribute noise in all three aforementioned noise scenarios, we followed
the same approach as suggested by Nettleton et al. (2010). We trained models using all four algorithms and assigned a rank
score as per their across-context performance on noisy data (e.g., the lower the rank the higher the performance). For example,
Random Forest performed comparatively better than other algorithms on noisy audio data (single source attribute noise scenario)
at leave-one-context-out evaluation, therefore, we assigned a rank 1. Finally, we took the average and standard deviation of the
model’s ranks across different noise configurations (as in Nettleton et al. (2010)).
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Figure 3. Model evaluation (In within-context evaluation, smaller boxes represent partitions of dataset after dividing it under
10-Fold CV)

6. Results
The results are structured according to the research questions posed in Section 4.

6.1 Model performance in the presence of attribute noise (RQ1)
We present here performance measures of collaboration quality estimation models with attribute noise in the aforementioned
three different scenarios, namely, single source attribute noise, single source missing attributes, and multiple source attribute
noise. The performance measures are reported at two levels of generalizability, denoted as ’Within’ and ’Across’, signifying
within-context and across-context evaluations, respectively. Additionally, the performance metrics are reported across various
levels of attribute noise. Here, we would like to remind the reader again that the noise levels in this study are not absolute. For
example, a noise level of 0% does not imply that data is completely noise-free rather it indicates that the quality of attributes
remains consistent between the training and test sets. Conversely, a noise level of 10% signifies that the test dataset contains
10% more noise compared to the training dataset.

Table 3. Collaboration quality model performance (mean±standard deviation) in single source (log) attribute noise scenario
(Higher performance measures are represented in the bold text) DT: Decision Tree, NB: Naive Bayes, RF: Random Forest, AB:
AdaBoost

Model
Attribute noise (all log feature at a time)

0% 10% 20% 30% 40% 50 %
Within Across Within Across Within Across Within Across Within Across Within Across

DT .43±.07 .24±.20 .43±.07 .23±.21 .43±.07 .23±.21 .42±.06 .24±.19 .43±.06 .23±.20 .43±.06 .23±.21
NB .18±.06 .09±.10 .17±.07 .08±.10 .17±.07 .08±.10 .17±.06 .07±.10 .15±.06 .08±.10 .18±.09 .10±.12
RF .44±.08 .27±.20 .44±.07 .26±.1 .46±.08 .28±.19 .46±.08 .28±.20 .44±.07 .27±.19 .44±.08 .26±.21
AB .40±.05 .21±.19 .39±.06 .20±.19 .36±.07 .19±.18 .36±.09 .21±.16 .34±.08 .18±.16 .30±.09 .18±.15

Model performance in single source attribute noise
Table 3 shows the models’ performance on data with noise in log attributes. At 0% noise level, Random Forest and Decision Tree
performed better than other algorithms within and across-context. Random Forest achieved the highest performance of Kappa
= .44 and Kappa = .27 (with 0% attribute noise in test data) when evaluated within the context and across different contexts,
respectively. Decision Tree also achieved a similar performance with a slight difference, e.g., .43 and .24 at within-context
and across-context generalizability levels. Overall, noise in log data seems to only slightly affect the performance of Random
Forest, Decision Tree, and Naive Bayes models’ performance (i.e., reduction in Kappa in the range of .01-.03) at both levels of
generalizability. Among these three, Naive Bayes showed a slightly larger decline in the within-context performance for 40%
noise level, going from Kappa= .18 (0% noise) to .15 (at 40% noise). Comparatively, AdaBoost models experienced more
degradation (i.e., reduction in Kappa from .40 to .30) in their within-context performance when performed on test data with
50% attribute noise.
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Table 4 presents the models’ performance with test data where only audio-based attributes were induced with noise. Decision
Tree and Random Forest showed a slight decline in their within-context performance, i.e., a reduction of .04-.05 in Kappa at
50% attribute noise in comparison with Kappa at 0% noise. Even with 50% audio attribute noise, Random Forest and Decision
Tree achieved performance of .40 and .38 Kappa within-context, respectively. Naive Bayes performed poorly in comparison
with others but the performance was only slightly decreased within and across-context with an increase in audio attribute noise.
AdaBoost suffered the most in terms of performance at both levels of generalizability, e.g., at 50% attribute noise, there was a
degradation of .16 and .07 in Kappa from the initial within-context(Kappa=.40) and across-context (Kappa=.21) performance,
respectively. Random Forest achieved the highest across-context performance for different proportions of audio attribute noise.

Table 4. Collaboration quality model performance in single source (audio) attribute noise scenario

Model
Attribute noise (all audio feature at a time)

0% 10% 20% 30% 40% 50 %
Within Across Within Across Within Across Within Across Within Across Within Across

DT .43±.07 .24±.20 .42±.07 .22±.21 .40±.07 .23±.18 .40±.07 .21±.20 .38±.07 .19±.18 .38±.08 .21±.18
NB .18±.06 .09±.10 .18±.06 .09±.10 .17±.04 .09±.09 .14±.07 .07±.09 .15±.07 .09±.08 .13±.09 .07±.09
RF .44±.08 .27±.20 .43±.09 .26±.19 .41±.09 .24±.18 .40±.07 .24±.18 .39±.08 .23±.18 .40±.08 .22±.19
AB .40±.05 .21±.19 .38±.04 .22±.17 .32±.05 .17±.15 .31±.06 .16±.16 .27±.06 .14±.13 .24±.04 .14±.12

Model performance in single source missing attributes scenario
Table 5 shows the performance of models for different cases of missing complete data from a specific source (audio, log
or both). Our Decision Tree model of collaboration quality emerged as a high-performing model for dealing with missing
audio data (emulated by adding 100% attribute noise in all audio attributes) achieving .33 and .16 Kappa at within-context
and across-context generalizability, respectively. For the same case of missing audio, Naive Bayes and AdaBoost degraded
to chance model performance (Kappa = 0 or close to zero) on both generalizability levels. For missing Log data, Random
Forest outperformed other algorithms, achieving .46 and .26 Kappa at the within-context and across-context generalization,
respectively. Decision Tree also performed close to Random Forest for missing log data, achieving Kappas of .41 and .23,
respectively. In the case of missing audio and log data, all the models became chance models, reaching a Kappa of zero ( or
close to zero). This is due to the loss of all information contained in the attributes used by models.

Table 5. Collaboration quality model performance in single source missing attributes

Model
Attribute noise (missing data emulated using 100% noise)
Audio missing Log missing Both missing

Within Across Within Across Within Across

DT .33±.09 .16±.18 .41±.06 .23±.20 .01±.05 .02±.07
NB 0±.00 0±.05 .06±.05 .04±.06 0±0 0±0
RF .29±.11 .15±.16 .46±.07 .26±.21 .04±.08 .02±.06
AB .03±.02 .01±.03 .17±.11 .10±.11 .03±.04 .02±.05

Table 6. Collaboration quality model performance in multiple source attribute noise scenario (noise in both audio & log)

Model
Attribute noise (all feature)

0% 10% 20% 30% 40% 50 %
Within Across Within Across Within Across Within Across Within Across Within Across

DT .43±.07 .24±.20 .36±.05 .20±.17 .31±.07 .18±.15 .27±.08 .16±.14 .22±.07 .12±.12 .19±.08 .11±.10
NB .18±.06 .09±.10 .17±.07 .09±.09 .14±.06 .06±.09 .17±.05 .07±.10 .12±.06 .06±.09 .11±.07 .06±.08
RF .44±.08 .27±.20 .40±.08 .26±.19 .33±.05 .20±.15 .31±.06 .20±.13 .24±.07 .14±.13 .20±.07 .12±.12
AB .40±.05 .21±.19 .38±.04 .19±.18 .34±.06 .18±.16 .30±.04 .17±.14 .27±.05 .14±.14 .22±.08 .13±.12

Model performance in multiple source attribute noise scenario
Table 6 shows the performance of collaboration quality models on test data having different proportions of noise added to both
audio and log features. As the noise increased in the data, all models experienced a decline in their performance (as expected).
The pattern of performance degradation was similar among Random Forest, AdaBoost, and Decision Tree. Naive Bayes, on
the contrary, showed relatively lower degradation. However, its performance was the lowest for all cases in both noisy and
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non-noisy data. Overall, Random Forest performed better for attribute noise =< 30 % than others while, for higher noise
levels (> 30%), AdaBoost outperformed (or achieved the same performance as) Random Forest on the levels of within-context
and across-context. At the 50% noise level, all high-performing models showed close to 50% loss in their performance (as
measured by Kappa).

6.2 ML algorithms’ capabilities in dealing with attribute noise (RQ2)
Table 7 shows the average ranking (and standard deviation) of algorithms on the task of estimating collaboration quality across
different types of noisy scenarios (single source attribute noise, single source missing attributes, and multiple source attribute
noise). Random Forest emerged as the most noise-resistant algorithm among all the four algorithms used. The rank was in
the range of 1 - 1.3 (with smaller variation), which can be interpreted as Random Forest outperforming other algorithms in
terms of working with attribute noise, in almost every noise scenario considered in this study. Decision Tree, despite being a
comparatively simple algorithm, achieved a rank in the range of 2-2.3 making it a strong candidate for modeling with attribute
noise. Naive Bayes was found to achieve the lowest performance reflected in its rank of 4 across different proportions of
attribute noise.

Table 7. Ranking of Algorithms (average rank±standard deviation)

Model
Attribute noise (all feature)

0% 10% 20% 30% 40% 50 %
Within Across Within Across Within Across Within Across Within Across Within Across

DT 2±0 2±0 2.3±.4 2.1±.3 2.3±.4 2.1±0.3 2±0.8 2.1±0.6 2.3±0.4 2.3±0.4 2.3±0.4 2.3±0.4
NB 4±0 4±0 4±0 4±0 4±0 4±0 4±0 4±0 4±0 4±0 4±0 4±0
RF 1±0 1±0 1±0 1±0 1.3± .4 1.1±0 1±0 1±0 1.3±0.4 1.1±0.3 1.3±0.4 1.1±0.4
AB 3±0 2.8±0 2.6±.4 2.6±.4 2.3±.9 2.5±0.7 2.6±0.4 2.6±0.4 2.3±0.9 2.3±0.9 2.3±0.9 2.3±0.9

7. Discussion
This section discusses the implication of the results presented above, around the research questions we set for the study.

7.1 RQ1 - How do different proportions of attribute noise in test data impact the collaboration quality
estimation models’ performance within and across-context?
• Finding-1: The attribute noise in log data seems to have minimal impact on the performance of collaboration quality

estimation models at the within-context and across-context levels of generalizability.
Our results showed that the noise in the log data features in general had a minimal impact of models’ performance. The
reason for the minimal impact on noise on models’ performance could be explained by the importance of the log-based
features in the different collaboration estimation tasks. We performed an impurity-based feature importance analysis
and found that our Random Forest model had speaking time based features (average and standard deviation) with the
highest feature importance. In contrast, all other features, including log-based features, had comparatively lower (50%
or less) feature importance. This could be due to the face-to-face nature of collaborative learning activities: the verbal
interaction between the participants was higher than their interaction with the collaborative writing editor (i.e., Etherpad).
It was also found in the analysis of audio and log features that almost 46% of log features were sparse while sparsity for
audio features was 11%. This suggests more face-to-face interaction than writing. The face-to-face nature, sparsity of
log features, and comparatively low feature importance might have led models (except AdaBoost) to learn more from
audio features. This may have contributed to the minimal impact of log noise on the within-context and across-context
performance. Consequently, the noise in log data was handled with graceful degradation by the models we developed.

• Finding-2: Noise in audio data seems to cause a higher degradation in the performance of the AdaBoost model.
We expected a severe degradation in all models’ performance due to audio attribute noise. However, only AdaBoost
and Naive Bayes showed that degradation. On the contrary, Random Forest and Decision Tree performed with only
a small degradation in their performance. Moreover, the Random Forest model was affected the least by noise at the
within-context level while the Decision Tree was the least affected model at the across-context level.
The findings on the higher performance of Random Forest for estimating collaboration quality with the presence of
attribute noise are aligned with ML research on the model’s performance with attribute noise (Melville et al., 2004).
Notably, our findings diverge from previous studies that found AdaBoost equally efficient as bagging-based methods
(e.g., Random Forest) for handling attribute noise. The discrepancy could be attributed to the distinct nature of our
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educational datasets compared to those (i.e., automobiles, disease) in prior studies, potentially influencing the impact of
attribute noise (Nettleton et al., 2010).

• Finding-3: Noise affecting all features from audio and log led to severe degradation in the performance of all models
except Naive Bayes.
The degradation in the performance of developed models was expected as a result of attribute noise in audio and log data
features. All models showed degradation in their within-context as well as across-context performance except Naive
Bayes. This result could be explained by the probabilistic nature of Naive Bayes which makes it “relatively insensitive to
noise” (Webb, 2010). This is also reported by Nettleton et al. (2010). However, the initial performance (i.e., at zero noise
level) of the Naive Bayes model was significantly lower than other models for collaboration quality estimation tasks
which makes it less suitable for modeling collaboration quality with simple audio and log features.
A 50% attribute noise level led to around 50% reduction in Kappa of our high-performing models (i.e., Random Forest
and Decision Tree). The reduction was in both, within-context and across-context performance. This reduction in
performance due to attribute noise may provide an estimate of how much a model’s performance could be degraded in
classroom settings. For example, a recent work from Pugh et al. (2022) reported that their language-based model achieved
a performance of 80% AUCROC (Area under the ROC curve) for classifying collaborative problem-solving aspects (i.e.,
constructing shared knowledge). It would be interesting to see whether their model suffers a similar performance loss
when exposed to noisy datasets in classroom settings. Furthermore, the reduction in performance raises the need for
extensive exploration of a model’s performance in the presence of noise, before putting that model into practice. It will
equip users with prior information about the expected decline in the model’s performance with noisy data, such as in
noisy environment.

7.2 RQ2 - Which ML algorithms show more robust performance in the presence of attribute noise for the
task of estimating collaboration quality?
• Finding-4: Random Forest and Decision Tree were found to be most effective in dealing with noisy data for collaboration

quality estimation tasks.
Our results showed that Random Forest outperformed other models developed using Decision Tree, Naive Bayes, and
AdaBoost algorithms for better estimating collaboration quality within and across-context. This finding on Random
Forest is consistent with work from Melville et al. (2004) which found ensemble models better at handling attribute
noise. The findings on the Decision Tree are also consistent with Nettleton et al. (2010) research where Naive Bayes and
Decision Tree both performed closely when noise was present in test data. We also expected the Naive Bayes model to
perform well with noisy data (Nettleton et al., 2010) and our results showed that the Naive Bayes model was affected the
least by attribute noise. However, due to poor initial performance (e.g., with 0% noise), Naive Bayes got the last rank.

This finding is more in line with MMLA research (Reilly & Schneider, 2019; Viswanathan & Vanlehn, 2018) on
collaborative learning and less with Nettleton et al. (2010). The results on Random Forest are aligned with the results of
MMLA studies (Reilly & Schneider, 2019; Viswanathan & Vanlehn, 2018) building collaboration quality models which
found that Random Forest outperformed other ML algorithms (e.g., Naive Bayes). Our results further take their findings
by providing that the same algorithm also performs best with attribute noise. Thus, we suggest the use of Random Forest
with a multimodal dataset involving audio data for building collaboration quality estimation models for authentic settings
where the quality of attributes is likely to be compromised.

The deviation in findings from Nettleton et al. (2010) is most likely due to differences in the dataset used for analysis
(i.e., Nettleton’s datasets were synthetically generated to mimic different real-world datasets while ours were from a
particular domain of educational settings). Nettleton et al. (2010) indeed suggest that the robustness of ML algorithms
with attribute noise is conditioned by the datasets used.

This finding, however, should be considered in the context of the set of four ML algorithms (namely Decision Tree,
Random Forest, Naive Bayes, and AdaBoost) we used for our study. Though we selected these because they frequently
achieve high performance for collaboration modeling tasks in LA and MMLA, still they only represent a small subset of
all possible ML algorithms. For example, researchers have also illustrated the potential of deep learning for estimating
collaboration aspects (Spikol et al., 2018). Furthermore, prior research has also shown the potential of deep learning
models to utilize histogram-based feature representation of students’ participation to assess collaboration quality (Som
et al., 2021). Ma et al. (2023) in their recent study also showcased the ability of deep learning models to perform
gracefully in the presence of noise. However, deep learning requires large amounts of training data to avoid overfitting
and it works as a “black box” – which makes the inspection and/or explanation of their outputs difficult, which we believe

13



is critical in educational applications. The fact that our datasets were limited in terms of size and the degree to which
model estimations could be explained also influenced our choice.

This finding also addresses the concerns raised by Alexandron et al., 2019 in their study about the need for more robust
and generalizable analysis techniques that can deal with data noise. Their study provided preliminary evidence that
introducing noise by adding simulated data of fake learners (i.e., “learners who do not rely on learning to achieve high
performance”, Alexandron et al. (2019)) biased results of LA significantly. Thus, there is a need to employ more robust
techniques that can also be generalized across courses. Our results on the robust performance of Random Forest and
Decision Tree, not only within a learning context but across different learning contexts, have implications for (MM)LA
communities.

Finding-5: Decision Tree may provide a robust, generalizable, and potentially explainable model for collaboration
quality estimation in noisy settings.
Our results showed that though Random Forest outperformed all other models, the performance gain over Decision
Tree was only 4% to 5% on within-context and across-context levels when noise was present in all the features. This
helps us to see that often overlooked easy to understand models (i.e., Decision Tree), also referred to as white-box
models (Loyola-González, 2019), can perform better across-context and even with the presence of attribute noise.
Decision Tree in comparison with Random Forest is easier to understand and is self-explanatory (Loyola-González,
2019). This finding provides preliminary results on the effectiveness of explainable (or white-box) models for the task of
collaboration estimation with attribute noise. Furthermore, in educational fields, the use of a Decision Tree could enable
practitioners to easily understand the estimation which may promote greater adoption of automated tools in practice.
This can potentially help in addressing the concerns related to trust with the use of AI in an educational context (Chounta
et al., 2022). The use of such explainable models could also help in reducing AI bias (particularly, algorithmic bias) in
education (Baker & Hawn, 2022).

7.3 Limitations
The presented study comes with a set of limitations. The first limitation is that the accuracy of presented findings relies on
the assumption of simulated noise being similar to the real environment of the study. In particular, our conceptualization of
attribute noise limits the applicability of our findings to scenarios where multiple factors cause attribute noise. Further research
work is needed to explore different noise generation processes, for example, recording noisy audio separately and fusing it with
clean audio data. The second limitation comes from the use of our datasets which were collected from different classrooms with
different subject teachers but from a single school. Thus, the narrow context variation limits the generalizability of our results
beyond an Estonian school. Furthermore, our datasets only had features from audio and log data, thus, the findings are not
necessarily applicable to other types of data (e.g., video data). The fourth limitation is our use of simple quantitative features.
This study makes use of literature-based simple quantitative features which do not employ sophisticated discourse analysis
(e.g., students having on-task or off-task discussion) of collaboration into account for modeling. This usage of only quantitative
features is likely to affect the robustness of developed models for collaboration estimation. The fifth limitation is with our use
of Rummel et al. (2011) framework for collaboration quality modeling. This use of a specific framework also narrows down the
scope of applicability of presented findings. There are other frameworks also available which could be explored, e.g., PISA
framework (OECD, 2017), NISPI (Cukurova et al., 2018). Finally, we explored only a small subset of ML algorithms, even if
we chose the most common ones used in MMLA for collaborative learning.

8. Conclusion & Future work
This paper addresses a research gap regarding the impact of attribute noise on collaboration quality estimation models developed
with supervised ML using multimodal data. In this paper, we provided a systematic analysis of how different proportions of
attribute noise affect the performance of collaboration quality estimation models. Our results showed that noise in log data
does not have a significant impact on the performance of used ML algorithms. However, the selection of ML algorithms
greatly affects the performance when noise is present in audio data. Our results suggest that Random Forest and Decision Tree
algorithms could be a good choice for building automated collaboration estimation models for authentic classroom settings
where attribute quality is likely to be compromised.

In our future work, we plan to explore other noise generation processes from related ML research (i.e., speech recog-
nition, and image processing) to study noise impact. We aim to extend our presented research for the real environment by
modeling/characterizing noise, and then using those models to study noise impact on model performance for the real-world
environment. In this sense, future research work should consider recording and analyzing audio data from a variety of
classrooms so that the distribution of noise in audio data could be better understood. We will collect data from authentic learning
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contexts with a larger range of variation (e.g., different kinds/lengths of collaborative learning activities, more variation in the
type of schools, varied educational levels, and conducting studies in several countries) to use for model development, and assess
whether differences among students or communication styles associated with different cultures also affect the performance
of ML models. Moreover, we also plan to explore other non-verbal audio features (e.g., pitch, energy), video features (e.g.,
emotions, facial action units, head movement) along with more features from Etherpad log data (e.g., higher level operations,
edit, paste). In addition, we also aim to utilize the speech text for extracting discourse-related features (e.g., argumentation
level, agreement, rapport) to model collaboration quality. The use of such discourse-related complex features, in addition to
adding more robustness to the resultant collaboration quality models, is likely to be more convincing to the practitioners, and
therefore, may contribute to adoption. In this paper, we have explored the impact of noise on collaboration quality, as a whole.
To go deeper, we also plan to investigate the impact of attribute noise on the estimation models of underlying dimensions of
collaboration quality. This investigation would differ from the present study on the modeling stage which will build ML models
for each dimension separately. This investigation could offer more insights into which dimensions can be estimated robustly
even in the case of attribute noise and which ones are likely to be significantly affected by attribute noise.

Our findings and methodological approach may help other researchers (e.g., from MMLA and CSCL communities) to
understand and evaluate the attribute noise effect in building automated collaboration quality models and the potential of white-
box models (like Decision Tree) towards building reasonably robust and generalizable AI solutions that are also explainable.
Furthermore, this paper also opens a new door for analyzing the practice-readiness of the current state of the art in collaboration
estimation using ML (i.e., how much performance loss could be expected due to attribute noise). We hope the community will
further explore this research direction, addressing attribute noise issues and advancing the realization of reliable automated
models for practical applications.

Appendix A
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Table 8. Characteristics of learning activities

id learning activity task students groups subject

1 The task was to complete the given sentences on past and present tenses. The activity
also asked the groups to discuss and write collaboratively a paragraph on what they
would do if they were given a particular sum of money (10,000 euros).

6 2 English
Language

2 The activity involved reading a magazine article containing multiple paragraphs explain-
ing the journey of a girl who became a press reporter from a librarian in a month. The
students were asked to first assign headings to each paragraph and then to discuss their
opinion on the possibility of learning a completely new job in a month.

8 3 English
Language

3 The task was to write an essay collaboratively on given topics (e.g., The generation today
is less healthy than our parents). The groups were also asked to assess their essay against
a set of checklists focusing on content, communication, organisation and language use.

4 2 English lan-
guage

4 The task involved preparing a presentation in the group on one of the epics4 topics (e.g.,
Gilgamesh, Song of my Cid). The groups were given instructions on the content to put
in the presentation, e.g., describe the main characters, and summarise the central story of
the epic. At the end of the session, the groups were asked to present in front of the class.

7 3 Estonian
language

5 The groups were given a speech conversation transcript involving people asking questions
about their habits. Groups were first asked to gather the same information from their
peers and write the complete sentences including the name of their peer.

9 3 English lan-
guage

6 The task involved a hypothetical situation of a person, Steve, who needed to renovate a
particular portion of his house (exterior facade, bathroom, and living room). The groups
were given a map of the house with measurements of each wall as well as the floor.
The groups were asked to first prepare a list of tools and materials needed to complete
the renovation. The groups were also asked to discuss the estimated cost of labour and
materials, and prepare the final document with all details for Steve.

15 5 Woodwork
and Chem-
istry

7 The collaborative activity involved solving a set of geometric problems. Each group was
given a similar set of problems with different measurements. For example, one problem
for group 3 was to calculate the perimeter and area of a rectangle with a diagonal of 8.5
dm forming an angle of 25 degrees with the longer side.

13 4 Mathematics

8 The groups were given topics to choose from and then write a for-and-against essay,
Firstly, they put down ideas supporting the topic, and secondly, they found arguments
opposing it. The groups were given a structure to follow for the essay.

9 3 English
Language

9 The activity involved dividing student groups into two categories: Employee and Em-
ployer. For each category, students were given a set of questions/tasks to discuss and
write down in the text editor. For example: one of the tasks for the Employer group was
“You are the owners of a construction company, please think about which personal traits
are important for a construction worker. Put down the traits below and also the reason
why they are important.”

13 4 English
Language

10 Same as #9. 8 3 English
Language

11 The task was to write a discursive essay on the topic “The Growth of Online Shopping
Has Greatly Improved Life for the Consumer” after brainstorming the arguments for and
against the topic’s idea. The groups were given a similar checklist as #3 for evaluating
their essay.

11 3 English
Language
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Appendix B
Figure 4 below shows a snapshot of log data collected from the group activity in the presented research. Whenever a participant
interacted with the collaborative text editor (i.e., Etherpad), an entry was recorded in the log data. This entry included timestamp,
author, group, char bank, changeset, source length (i.e., text length before the action), operation (i.e., type of operation),
difference(i.e., the difference in the text length as a result of the action), and difference. The timestamp represents the time when
the action was performed. The participant id and group id were captured in the author and group columns. The char bank
column recorded what text was added or deleted by the participant. The changeset column encoded information related to where
changes were made in the document. The editor uses this encoded form to reproduce the change history. The source length
column recorded the text length in the editor before the current interaction. The operation recorded whether the text was added
(>) or deleted (<). The difference column tracked the difference in the length as a result of the current interaction. Finally, the
text column recorded the text present in the editor.

Figure 4. Sample of log data

Figure 5 shows a snapshot of the VAD (Voice Activity Detection) data file which recorded participants’ speaking activity.
This file contained information related to timestamp, user, group, and speaking time. The timestamp is when the participant
spoke and speaking time is the continuous speaking duration in seconds. The information about the participant and the group
participant belongs to were recorded in the user and group columns.

Figure 5. Sample of voice activity detection data

Figure 6 presents a sample of a speech data file. The information on timestamp, user and group represent the same to the
VAD file. The last column (i.e., speech) contained the speech-to-text data.

Figure 6. Sample of speech data
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